2023 Fall Mathematical Analysis II1 1

Solutions to Assignment 2

1. Let C52 be the class of all smooth 27-periodic, complex-valued functions and C* the class
of all complex bisequences satisfying ¢, = o(n™*) as n — oo for every k. Show that the
Fourier transform f — f is bijective from C37 to C*°.

Solution First, we show that the Fourier coefficients of a smooth, periodic function are

rapidly decreasing. A repeated application of Problem 1 shows that (in)*f(n) is equal to
the Fourier coefficients of f(*) for every k. In general, we have
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that is, the Fourier coefficients of any integrable function are always uniformly bounded.
Now, for a fixed k, we have
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so {f(n)} belongs to C* .

Second, onto. Let {¢,} be a rapidly decreasing bisequence. Define
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Taking k& = 2, we have

[ene™ | = len < 5,

for some constant C'. By M-Test the right hand side in f is a uniformly convergent series of
functions so f is well-defined. Furthermore, as uniform convergence preserves continuity,
f is also continuous. By using M-Test to > °°_inc,e™ (taking k = 3), we see that it
is also uniformly convergent. By one exchange theorem we learned in 2060 we conclude
that f is differentiable and f'(z) = .°°_ inc,e™® . Repeating this argument we see that
fecsy.

Third, one-to-one. By Theorem 1.7 f(z) = S.°°_ f(n)e™ and g(z) = 3% §(n)e.
When f(n) = g(n), it is obvious that f = g.

2. Propose a definition for /d/dz. This operator should be a linear map which maps C32 to

itself satisfying
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Solution Use complex notation. For a smooth function f,

fr(n) = inf(n). (1)

for all smooth, 27-periodic f.
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In view of i = €/2, this motivates us to define g(z) = \/d/dzf(x) to be the function
whose Fourier series is given by

g(n) = cn = €™ /nf(n).
That is,
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When f € C92, by Problem 5 in Assignment 1 (see also the previous problem), it is easy
to see that the series in the right hand side of g defines again a smooth and 27-periodic
function, and the convergence is uniform. Hence \/d/dz is a linear map on CS5° to itself.

Writing h(x) = \/%\ / %f(w), then

h(n) = e™/4/ng(n) = /4y /ne ™/ f(n) = (in) f(n).

By the the uniqueness of the Fourier series, one has
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This problem demonstrates the power of Fourier series. It is hopeless to define fractional

derivative on the function directly.

3. Let f be a continuous, 27-periodic function and its primitive function be given by

Fla) = /0 " fa)de.

Show that F' is 27-periodic if and only if f has zero mean. In this case,
A 1 -
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Solution. From
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it is clear that F' is of period 27 if and only if f has zero mean. The formula comes by
easily.

4. Let C' be the subspace of C consisting of all bisequences {c,} satisfying >-%° _|c,|? < oco.

(a) For f € R[—m, x|, show that
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(b) Deduce from (a) that the Fourier transform f — f(n) maps Ro, into C'.

(c) Explain why the trigonometric series

Y ae(0,1/2],
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is not the Fourier series of any function in Ra.

Solution. (a) Using (f(z) — Y p__, cke™®) (f(z) — Yp__, cre’*®) > 0 for all n and z,
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by the orthogonality of e %%’s. The desired inequality follows by letting n go to infinity.

(b) It is clear from (a).

(c) From 3 |e,|? < oo one deduces that > a2, > b2 < oo also hold when the function is of
real-valued. Now, if the given trigonometric series come from an integrable function, then
Sa2 =3 ni must be finite. But now it is not when « € (0, 1]. We conclude that it is

2a
not a Fourier series.



